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SUMMARY

This paper presents a numerical model to study the laminar flows induced in confined spaces by natural
convection. A control volume finite-element method (CVFEM) with equal-order meshing is employed to
discretize the governing equations in the pressure–velocity formulation. In the proposed model, unknown
variables are calculated in the same grid system using different specific interpolation functions without
pressure correction. To manage memory storage requirements, a data storage format is developed for
generated sparse banded matrices. The performance of various Krylov techniques, including Bi-CGSTAB
(Bi-Conjugate Gradient STABilized) with an incomplete LU (ILU) factorization preconditioner is verified
by applying it to three well-known test problems. The results are compared to those of independent
numerical or theoretical solutions in literature. The iterative computer procedure is improved by using
a coupled strategy, which consists of solving simultaneously the momentum and the continuity equation
transformed in a pressure equation. Results show that the strategy provides useful benefits with respect
to both reduction of storage requirements and central processing unit runtime. Copyright q 2006 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

To benefit from the intrinsic characteristics of the finite-element methods (FEMs) and the control
volume methods (CVM) to handle mechanical fluid problems within complex-shaped domains,
Baliga and Patankar were the first to propose the concept of control volume finite-element method
(CVFEM) [1]. This hybrid method offers the possibility of combining the flexibility of FEM with
the easy physical interpretation of CVM. However, the applicability of aforementioned CVFEMs
to practical flow problems suffers from intrinsic limitations. More reviews suspect the inexistence
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of pressure equation in incompressible fluid flows to be the cause of many convergence difficulties
or spurious oscillations such as the pressure ‘checkerboard’ problem described in [2, 3]. However,
algorithms based on CVFEM for simulating Navies–Stokes equations in arbitrary complex geome-
tries continue to be under intense development and the method remains popular in the numerical
modelling. Therefore, modifications and extensions to the original method have been published
[4–7].

To overcome difficulties of the velocity–pressure coupling, studies research the adequate meshing
and the resourceful interpolation functions for each variable. Baliga [8] first introduced the two
shifted meshes type computing the pressure at much fewer grid points than the velocity. This
involves the pressure and the velocity on two different sets of elements, called, respectively,
macro- and micro-elements. This has made the method quite complex. Additionally, the use
of separate computational grids and different families of control volumes for momentum and
continuity equations do not guarantee a strict satisfaction of conservation principles over the same
control volume for all transported variables. Finally, since the shifted meshes method uses a much
coarser grid for pressure, it may not be very accurate for problems with steep pressure gradients.
Prackash and Patankar [6], proposed an equal-order procedure using the same control volume for
all variables with specific interpolation functions. Sabbas and Baliga [7] asserted that the linear
interpolation is sufficient in the treatment of the diffusive case at a time an exponential interpolation
is retained for the convective case. Abbassi et al. [9] reported that the linear interpolation is more
stable than the exponential interpolation.

Moreover, in recent years, claims have emerged for pressure-correction-based schemes. Since
then, SIMPLE algorithm and its variants SIMPLER, SIMPLEC, SIMPLESS and SIMPLESSEC
have been established [10–12]. Belblidia et al. [13] reported that schemes, applied to pressure-
driven flows, encounter severe numerical discretization error. This arises in the form of large spatial
oscillations across the field and through proper specification of auxiliary (velocity) variables.

The main contribution of this paper is the use of the CVFEM for solving the Navier–Stokes
equations in the velocity–pressure formulation without pressure correction using an equal-order
(EO) meshing and a not equal-order (NEO) meshing. The EO considers only one control volume
where all dependant variables are co-located but the NEO meshing uses two separate grids for the
pressure and the momentum.

In the present work, characteristic pressure and velocity interpolations lead to a pressure equation
via the mass conservation equation. However, the resolution of this equation requires pressure
boundary conditions, which are not always available. On the other hand, it is known in fluid
mechanics that the knowledge of pressure gradients is more instructive than pressure values. So,
the incompressibility condition, when it is verified, is assumed to evade this shortage. In order to
assess the capability of the proposed model, the SIMPLER algorithm is used to carry out further
results. That allows thorough analyses.

The governing partial differential equations (PDEs) are transformed in nodal algebraic equa-
tions via integrating over each control volume by use of appropriate interpolation functions. Two
strategies are adopted to resolve these equations, called not coupled strategy (NCS) and coupled
strategy (CS). In NCS, algebraic equations are resolved separately and, in the CS, the pressure
equation and the momentum equations are resolved simultaneously. However, the second strategy
leads to sparse and large matrices. Then, the storage technique Yale Sparse Matrix Package [14]
is applied.

For solving nodal equations system, conjugate gradient stabilized (CG-Stab) combined with
preconditioning symmetric successive over-relaxation (SSOR) is used [15, 16]. The purpose of
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this work is to show that the CVFEMs using the proposed pressure equation with CS and unique
meshing are robust for solving the Navier–Stokes.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

The flow is assumed steady and laminar and the fluid properties are assumed constant. The
buoyancy effect is considered via the Boussinesq approximation. In addition, the pressure work
and the dissipation terms are neglected. For any � property, which can be diffused and transported
by the overall or gross fluid motion, the combined convection and diffusion flux is represented by
a vector j�, generally given in its dimensionless form by:

j� = �v� − R�∇� (1)

� is constant to be equal to zero when this expression is extended to a non-transportable variable;
v and R� are, respectively, the velocity vector and the corresponding diffusive dimensionless
coefficient. The local conservative equation form for the steady two-dimensional incompressible
flow is

div( j�) = S� (2)

S� is the corresponding volumetric source. It is known that differential equations alone do not
specify the problem; we need additional information: boundary conditions for all dependant vari-
ables and auxiliary equations allowing diffusion fluxes, body forces and sources to be computed.
For the momentum conservation, Equation (2) in steady incompressible cases, depending on an
eventual volumetric forces contribution s and the Reynolds number Re, is

(v.grad).v − 1

Re
�v= −grad(p) + s (3)

A general integral formulation corresponding to Equations (2) can be obtained by applying the
conservation principle to a control volume � that is fixed in space:∫

�
div( j�) d�=

∫
�
S� d� (4)

Table I indicates the dimensionless parameters and variables used in this paper. sx is equal to zero
when the volumetric source reduces to Archimedes forces and (x, y) represent, respectively, the
horizontal and the vertical axes.

Table I. Coefficients and source terms in solved equations.

� R� S� �

Mass 0 0 0

Horizontal velocity: u 1/Re − �p
�x 1

Vertical velocity: v 1/Re − �p
�y + GrT 1

Temperature: T 1/RePr 0 1
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Figure 1. Calculation domain and control volume construction.

2.2. Presentation of the CVFEM

2.2.1. Discretization of the domain (finite elements–control volume). The domain of interest is
first divided into three nodes triangular elements, which satisfy the following requirement: do
not overlap and, together, fill exactly and completely the calculation domain. The vertices, called
nodes, of these triangular elements are the storage locations for dependant variables. Around each
node N, a polygonal control volume is constructed by joining the centroid with the middle of each
correspondent element side. Figure 1 shows mesh points for pressure and velocity locations.

2.2.2. Interpolation functions. Using appropriate interpolation functions, integral (4) provides an
algebraic system in terms of the variable’s values at the nodal locations. In this respect, Baliga and
Patankar [1] developed an approach inspired by the unidirectional convection–diffusion problems.
When a laminar flow is developed in one direction with a uniform velocity u parallel to the x-axis,
Equation (3) admits the following analytical solution: �(x)= �0 exp((u/R�)x).

This solution can be extended to any flow without source term in an elementary space where
the flow is assumed unidirectional. Hence, one can define an approximate solution, which must
favour the convective transport in the main flow direction and take account of the diffusion in
transversal direction in each finite element as

�(X, Y ) = A� exp

(
V

R�
X

)
+ B�Y + C� (5)

X and Y represent a local Cartesian coordinate system of whom the origin is located at the centroid
G of the element. The first axis aligns with the average velocity direction and the second with the
direct perpendicular axis. Obviously, when the diffusion is dominant, the variable � is bilinear. All
coefficients (A�, B�,C�) must be evaluated by requiring the correspondent interpolation function
to assure the nodal values of the considered variable. Each coefficient can be expressed in terms
of the nodal coordinates and the nodal values of the corresponding variable.

This function, used by Omri and Nasrallah [17], Alimi et al. [18] and Omri et al. [19] is of the
flow-oriented upwind type but difficulties signalized in [7] are not remarked.

The pressure, which is not an extensive variable, can be assumed bilinear in each finite element:

p= Ap · x + Bp · y + Cp (6)
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Figure 2. Sub-control volumes: local coordinates system.

When Equation (6) is required to assure the nodal values of the pressure, all coefficients (Ap, Bp,Cp)

will be evaluated and expressed in terms of the nodal coordinates and the nodal pressure values.

2.2.3. Algebraic equations.

2.2.3.1. General form for dependant variables. Using Equations (5) and (6), integral (4) can
be calculated over the control volume rounding each node N. As shown in Figure 2, each node is
the summit of a number E of finite elements, as NN1N2, which contribute to the control volume
by sub-volumes as MGi P .

Using the theorem of Green–Ostrogradsky and the Simpson role, this integrating must be over
each sub-volume and transforms in a nodal equation:

i=K∑
i=1

(a�
i �i ) = B�

N (7)

In this equation, the last term includes the term source contributions but the pressure must
appear only when � represents the velocity components u and v.

2.2.3.2. Algebraic pressure equation. In integral form, over the control volume corresponding
to node N, the mass conservation is expressed, for incompressible fluid flow as

∫
�
div(v) d�= 0 (8)

Using a bilinear interpolation for each velocity component, this integral transforms in a nodal
algebraic equation as

i=K∑
i=1

(aui ui ) +
i=K∑
i=1

(av
i vi ) = 0 (9)

This equation transforms in a pressure equation when u and v are extracted from correspond-
ing Equations (7). At node N, these components can be expressed by relative pseudo-velocities
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ûN and v̂N as

uN = ûN +
i=K∑
i=1

(a′v
i pi ) (10a)

vN = v̂N +
i=K∑
i=1

(b′v
i pi ) (10b)

Using Equations (6), (9), (10), the pressure equation appears as

i=K∑
i=1

(api pi ) = SpN (11)

2.3. Solution method

2.3.1. Strategies. At each node, an algebraic equation is established for each variable. On that,
when the domain discretization leads to n control volumes (CVs), the algabraic system includes n
blocks of five equations: two for pseudo-velocities, two for velocity components and one for the
pressure. These equations are intricately coupled by the dynamic system variables and great care
must be taken in order to achieve a convergent simulation result. There are two possibilities for
solving this deposit. First, the NCS which solves separately and successively the set of Equations
(7), (11) for the velocity components and the pressure. Second, the CS that sets these equations
in a global matricide form

AX = B (12)

Each component of the vector X corresponds to one amongst five desired variables. A, viewed
entierly, is n × n block matrix having internal sub-blocks of size 5× 5. The efficient resolution of
this type of system can be expensive and then it is imperative to take into account the inherent
blocks nature by the use of a good iterative technique. To manage memory storage requirements,
a data storage based on Yale Sparse Matrix Package [15, 16] is used.

2.3.2. Sparse matrix solver. Given the linear sparse matrix system for each inner linearization step
and some of initial solution X (0), the numerical resolution consists of annulling the vector AX − B
which can be considered as the gradient of the quadratic function: f (X)= XTAX − XTB. This
can be achieved by the conjugate gradient schemes. For all of the tests performed in this work,
we select the bi-conjugate gradient stabilized (Bi-CGSTAB) which is the most popular generation
of the later CG Method. This provides a smooth convergence behaviour by employing steepest
descent steps at each iteration [15, 16].

2.3.3. Preconditioner. In an attempt to reduce the overall computation time, system (12) is modified
by an adequate preconditionning: (PA)X =PB. The well-known incomplete factorization level
zero, ILU(0), has been selected in this study. For this preconditionning matrix, the structure of the
decomposed matrix ILU is consistent with the structure of the original A matrix and no extra fill
is added [20].
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2.3.4. Computational procedure. The resolution is illustrated by the following sequences:
Step 1: Guess initial values for each unknown variable and apply boundary conditions for

velocity components and any other dependent variable �.
Step 2: Calculate coefficients for the pseudo-velocity, the velocity and the pressure equations.
Step 3: Solve the algebraic system (12).
Step 4: Calculate all coefficients for each other dependant variable equation.
Step 5: Solve for other dependent variables.
Step 6: Check for convergence: if the criteria are not satisfied then return to step 2.
The discrepancies between the grid dimension in terms of select flow and thermal quantities

were compared considering also the central processing unit (CPU) times required on a Pentium IV,
1.6MHz processor. A grid density of 51× 51 was chosen for the calculation of all cases. Solutions
were assumed to converge when the following convergence criteria were satisfied for every variable
at every node in the solution domain:

∣∣∣∣∣
�k − �k−1

�k−1

∣∣∣∣∣<�

� is fixed below 10−3, k and k − 1 refer, respectively, to a present iteration and the precedent
iteration; � represents u, v, p and variables �.

To prevent eventual divergence or oscillatory convergence experimented when the change in
the solution field, from iteration to the next, the computing is controlled by the underrelaxation
techniques described by Van Doormal and Raithby [10]. In order to ensure the mass conservation
at each iteration end, this is also done for the pressure equation.

3. APPLICATION TO TEST PROBLEMS

The code, elaborated by using the CVFEM and the numerical schemes presented in the second
section, was validated by comparing against well-known analytical or numerical results available
in the literature relative to laminar flow studies. Therefore, in this section, the validation and the
analysis concern three test problems, which are the flow between concentric rotating cylinders, the
driven cavity and the natural convection in a square cavity.

Before the main course of the computations, a numerical experiment was carried out for grid-
independence test. Results on 11 ∗ 11, 21 ∗ 21, 31 ∗ 31, 35 ∗ 35, 41 ∗ 41 and 45 ∗ 45 grids were
examined. The solutions on 35∗35 are very close than those of 41∗41 but the solutions on 41∗41
and on 45 ∗ 45 agree well. To reduce the computational efforts, therefore, the 41 ∗ 41 grid was
chosen for the calculations through the entire study. As in [21], the grid system is a uniform one.

3.1. Flow between concentric rotating cylinders

Consider the isothermal flow of an incompressible fluid between two concentric cylinders.
The inner cylinder is at rest, while the outer cylinder is in a uniform rotation. The exact solution

for this problem can be found in Reference [22]. In the x–y Cartesian coordinates, the problem is
fully two dimensional with velocity component u and v along the x and y coordinates, respectively.
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Figure 3. Concentric rotating cylinders: (a) domain of interest; and (b) the profile of
the horizontal velocity component along the diagonal.

The analytical dimensionless solution is

u = 2

3
y

(
1 − 1

r2

)
, v =−2

3
x

(
1 − 1

r2

)
and p= y

(
1 − 1

r2

)

Dimensionless variables are defined by reference to r1 for distances, r1� for velocities and �r21�
2

for pressure. Figure 3(a) indicates the calculation domain in the annular space. For the boundary
conditions, both u and v were prescribed using the exact solution. Figure 3(b) shows the profile of
the horizontal velocity component along the main diagonal. One can see that the computed results
are in a good agreement with the exact solution.

In order to compare different strategies, we define an infinity error for each iteration as

� =Log

∣∣∣∣∣
�k+1 − �k

�k+1

∣∣∣∣∣
The convergence rate is depicted in Figure 4 representing the CPU time used by the EO and

NEO methods for a Reynolds number equal to 200. One can remark that the NEO is faster than
the EO (Figure 4(a)). This result is predictable seeing that computing the pressure over coarse grid
needs less calculation. However, as it can be pointed out from Figure 4(a) and (b), the SIMPLER
algorithm enhances the convergence quickness both for EO and NEO methods.

Elsewhere, Figure 4(c) shows that the NEO method together with the CS requires 50% less
CPU time than NCS.

For a close comparison in term of precision, we define relative error as

%error=
∣∣∣∣�exact − �computed

�exact

∣∣∣∣
Tables II and III give the velocity components values at the midpoint of the computational domain.
Obviously, the EO and NEO methods are competitive but regarding the precision over all nodes,
the first method gives lower errors. Table IV relates the swerving of the present results on the
exact solution.
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Figure 4. Concentric rotating cylinders: infinity error norm on pressure for Re= 200.

Table II. Relative error at the centre of the domain equal-order method.

Solutions Horizontal velocity Vertical velocity

Analytical 0.3928 −0.3928
Re= 100 Numerical 0.3925 −0.3924

Error (%) 0.08 0.1

Analytical 0.3928 −0.3928
Re= 400 Numerical 0.3924 −0.3924

Error (%) 0.1 0.1

3.2. The driven cavity problem

The second test problem concerns a steady laminar flow of an incompressible Newtonian fluid in
a square enclosure. As illustrated in Figure 5(a), a sliding lid generates the fluid motion at the top
boundary. Three sides of the cavity are at rest while the fourth, the top wall, moves tangentially
with velocity u0. The depth of the enclosure perpendicular to the diagram is assumed long and
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Table III. Relative error at the centre of the domain not equal-order method.

Re Solutions Horizontal velocity Vertical velocity

Analytical 0.3928 −0.3928
100 Numerical 0.3932 −0.4121

Error (%) 0.1 5

Analytical 0.3928 −0.3928
400 Numerical 0.3952 −0.3943

Error (%) 0.6 0.4

Table IV. Average relative error over the domain equal and not equal-order methods.

Equal-order method Not equal-order method

Re Horizontal velocity (%) Vertical velocity (%) Horizontal velocity (%) Vertical velocity (%)

100 0.101 0.090 0.217 0.252
400 0.124 0.113 0.621 0.531

Figure 5. (a) Driven cavity; and (b) velocity profile at the midplane.

the problem can be considered two dimensional. The velocity is equal to zero on the bottom and
on each vertical wall. The dimensionless velocity components on the top wall are u = 1, v = 0.

Figure 5(b) presents the profile of the horizontal velocity at the vertical centreline for Re= 400.
As it can be seen, the performance of the proposed EO and NEO methods is illustrated. However,
the result carried out by EO method is more close to that of Reference [5]. Table V shows the
velocity components values at the domain centre. The relative error obtained by the EO method
is less than the error obtained by the NEO method.
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Table V. Values of the velocity components at the centre.

Re= 100 Re= 400

Methods u v u v

Equal order −0.199 0.05 −0.104 0.056
Not equal order −0.186 0.045 −0.085 0.041
Ghia and Ghia [23] −0.20581 0.05454 −0.1147 0.05186

Figure 6. Driven cavity-infinity error norm on pressure for Re= 100: (a) not coupled strategy; (b) not
coupled strategy with SIMPLER; and (c) coupled strategy.

Figure 6 summarizes the comparison of the CPU time for the driven cavity problem using EO
and NEO. The convergence with CS is faster than the NCS.

3.3. Natural convection in a square cavity

The physical system of the natural convection in a square cavity is schematically shown in
Figure 7(a). The hot and cold vertical walls are both isothermal, having temperature Th = 1
and Tc = 0, respectively. The top and the bottom are assumed adiabatic. The fluid is assumed
incompressible and the flow is governed by Boussinesq hypothesis.
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Figure 7. (a) Natural convection in the square cavity; and (b) temperature profile at the midplane.

Figure 8. Natural convection in a square cavity: infinity error norm on pressure for Ra= 1000: (a) not
coupled strategy; and (b) coupled strategy.

Figure 7(b) shows the temperature profile along the horizontal midplane for Ra= 104 using
the EO method and NEO method. The result is in concordance with the solution published by
Patankar [6]. Obviously, the EO method provides result more close to the reference.

Figure 8 shows the convergence rate expressed in terms of CPU. The CS reduces noticeably
the convergence time for both methods.

4. CONCLUSION

A numerical model, based on the control volume finite-element methods was proposed to resolve
Navier–Stokes equations in the primary formulation (velocity–pressure). Two schemes, equal order
and not equal order, were used to discretize the domain of interest and two strategies, coupled
strategy and not coupled strategy, were used to resolve the algebraic system. Three problems in
the domain of fluid flow and heat transfer are investigated. A comparison about precision and
convergence rate has been done.
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Results indicate that the use of a coarser grid for pressure improves the convergence rate but
reduces the precision of the solution. The equal order is more accurate than the not equal order
but the second is more rapid. When the algebraic system relative to the nodal momentum and the
pressure is set as a unique equation, the resolution requires less time than the separate resolution.
Then, algorithms using the not equal-order method with the coupled strategy are faster than the
equal order with the not coupled strategy.

NOMENCLATURE

g gravitational acceleration
p dimensionless pressure
Pr Prandtl number
Ra Raleigh number
Re Reynolds number
T non-dimensional temperature
u, v Cartesian velocity components
V average velocity magnitude
x, y coordinates
X, Y local coordinates

Subscripts

e element
nb neighbours of point P
P pertaining to typical grid point
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